Extensions 1→N→G→Q→1 with N=D8:C22 and Q=C2

Direct product G=NxQ with N=D8:C22 and Q=C2
dρLabelID
C2xD8:C2232C2xD8:C2^2128,2312

Semidirect products G=N:Q with N=D8:C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D8:C22:1C2 = M4(2):5D4φ: C2/C1C2 ⊆ Out D8:C22168+D8:C2^2:1C2128,740
D8:C22:2C2 = C42:2D4φ: C2/C1C2 ⊆ Out D8:C22164D8:C2^2:2C2128,742
D8:C22:3C2 = (C2xC8).2D4φ: C2/C1C2 ⊆ Out D8:C22324D8:C2^2:3C2128,749
D8:C22:4C2 = D8:D4φ: C2/C1C2 ⊆ Out D8:C22168+D8:C2^2:4C2128,922
D8:C22:5C2 = C42.313C23φ: C2/C1C2 ⊆ Out D8:C22164D8:C2^2:5C2128,1750
D8:C22:6C2 = M4(2):C23φ: C2/C1C2 ⊆ Out D8:C22168+D8:C2^2:6C2128,1751
D8:C22:7C2 = M4(2).C23φ: C2/C1C2 ⊆ Out D8:C22328-D8:C2^2:7C2128,1752
D8:C22:8C2 = M4(2).10C23φ: C2/C1C2 ⊆ Out D8:C22324D8:C2^2:8C2128,1799
D8:C22:9C2 = M4(2).37D4φ: C2/C1C2 ⊆ Out D8:C22168+D8:C2^2:9C2128,1800
D8:C22:10C2 = C8.C24φ: C2/C1C2 ⊆ Out D8:C22324D8:C2^2:10C2128,2316
D8:C22:11C2 = D8:C23φ: C2/C1C2 ⊆ Out D8:C22168+D8:C2^2:11C2128,2317
D8:C22:12C2 = C4.C25φ: C2/C1C2 ⊆ Out D8:C22328-D8:C2^2:12C2128,2318

Non-split extensions G=N.Q with N=D8:C22 and Q=C2
extensionφ:Q→Out NdρLabelID
D8:C22.1C2 = M4(2).44D4φ: C2/C1C2 ⊆ Out D8:C22324D8:C2^2.1C2128,613
D8:C22.2C2 = C42.426D4φ: C2/C1C2 ⊆ Out D8:C22164D8:C2^2.2C2128,638
D8:C22.3C2 = M4(2).D4φ: C2/C1C2 ⊆ Out D8:C22328-D8:C2^2.3C2128,741
D8:C22.4C2 = C42.131D4φ: C2/C1C2 ⊆ Out D8:C22164D8:C2^2.4C2128,782
D8:C22.5C2 = C22:C4.7D4φ: C2/C1C2 ⊆ Out D8:C22324D8:C2^2.5C2128,785
D8:C22.6C2 = D8.D4φ: C2/C1C2 ⊆ Out D8:C22328-D8:C2^2.6C2128,923
D8:C22.7C2 = M4(2).51D4φ: C2/C1C2 ⊆ Out D8:C22164D8:C2^2.7C2128,1688
D8:C22.8C2 = M4(2).38D4φ: C2/C1C2 ⊆ Out D8:C22328-D8:C2^2.8C2128,1801
D8:C22.9C2 = C42.283C23φ: trivial image324D8:C2^2.9C2128,1687

׿
x
:
Z
F
o
wr
Q
<